Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802681

RESUMEN

In this study, we test the performance of a compact gas chromatograph with photoionization detector (GC-PID) and optimize the configuration to detect ambient (sub-ppb) levels of benzene, toluene, ethylbenzene, and xylene isomers (BTEX). The GC-PID system was designed to serve as a relatively inexpensive (~10 k USD) and field-deployable air toxic screening tool alternative to conventional benchtop GCs. The instrument uses ambient air as a carrier gas and consists of a Tenax-GR sorbent-based preconcentrator, a gas sample valve, two capillary columns, and a photoionization detector (PID) with a small footprint and low power requirement. The performance of the GC-PID has been evaluated in terms of system linearity and sensitivity in field conditions. The BTEX-GC system demonstrated the capacity to detect BTEX at levels as high as 500 ppb with a linear calibration range of 0-100 ppb. A detection limit lower than 1 ppb was found for all BTEX compounds with a sampling volume of 1 L. No significant drift in the instrument was observed. A time-varying calibration technique was established that requires minimal equipment for field operations and optimizes the sampling procedure for field measurements. With an analysis time of less than 15 min, the compact GC-PID is ideal for field deployment of background and polluted atmospheres for near-real time measurements of BTEX. The results highlight the application of the compact and easily deployable GC-PID for community monitoring and screening of air toxics.

2.
Environ Sci Technol ; 53(16): 9636-9645, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31347357

RESUMEN

California methane (CH4) emissions are quantified for three years from two tower networks and one aircraft campaign. We used backward trajectory simulations and a mesoscale Bayesian inverse model, initialized by three inventories, to achieve the emission quantification. Results show total statewide CH4 emissions of 2.05 ± 0.26 (at 95% confidence) Tg/yr, which is 1.14 to 1.47 times greater than the anthropogenic emission estimates by California Air Resource Board (CARB). Some of differences could be biogenic emissions, superemitter point sources, and other episodic emissions which may not be completely included in the CARB inventory. San Joaquin Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr), followed by the South Coast Air Basin, the Sacramento Valley, and the San Francisco Bay Area at 0.39 ± 0.18, 0.21 ± 0.04, and 0.16 ± 0.05 Tg/yr, respectively. The dairy and oil/gas production sources in the SJV contribute 0.44 ± 0.36 and 0.22 ± 0.23 Tg CH4/yr, respectively. This study has important policy implications for regulatory programs, as it provides a thorough multiyear evaluation of the emissions inventory using independent atmospheric measurements and investigates the utility of a complementary multiplatform approach in understanding the spatial and temporal patterns of CH4 emissions in the state and identifies opportunities for the expansion and applications of the monitoring network.


Asunto(s)
Contaminantes Atmosféricos , Metano , Aeronaves , Teorema de Bayes , California , San Francisco
3.
J Air Waste Manag Assoc ; 65(4): 404-12, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25947210

RESUMEN

UNLABELLED: Measuring greenhouse gas (GHG) source emissions provides data for validation of GHG inventories, which provide the foundation for climate change mitigation. Two Toyota RAV4 electric vehicles were outfitted with high-precision instrumentation to determine spatial and temporal resolution of GHGs (e.g., nitrous oxide, methane [CH4], and carbon dioxide [CO2]), and other gaseous species and particulate metrics found near emission sources. Mobile measurement platform (MMP) analytical performance was determined over relevant measurement time scales. Pollutant residence times through the sampling configuration were measured, ranging from 3 to 11 sec, enabling proper time alignment for spatial measurement of each respective analyte. Linear response range for GHG analytes was assessed across expected mixing ratio ranges, showing minimal regression and standard error differences between 5, 10, 30, and 60 sec sampling intervals and negligible differences between the two MMPs. GHG instrument drift shows deviation of less than 0.8% over a 24-hr measurement period. These MMPs were utilized in tracer-dilution experiments at a California landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Replicate landfill measurements during October 2009 yielded annual CH4 emissions estimates of 0.10±0.01, 0.11±0.01, and 0.12±0.02 million tonnes of CO2 equivalent (MTCO2E). These values compare favorably to California GHG Emissions Inventory figures for 2007, 2008, and 2009 of 0.123, 0.125, and 0.126 MTCO2E/yr, respectively, for this facility. Measurements to quantify NGCS boosting facility-wide emissions, during June 2010 yielded an equivalent of 5400±100 TCO2E/yr under steady-state operation. However, measurements during condensate transfer without operational vapor recovery yield an instantaneous emission rate of 2-4 times greater, but was estimated to only add 12 TCO2E/yr overall. This work displays the utility for mobile GHG measurements to validate existing measurement and modeling approaches, so emission inventory values can be confirmed and associated uncertainties reduced. IMPLICATIONS: Measuring greenhouse gas (GHG) source emissions provides data and validation for GHG inventories, the foundation for climate change mitigation. Mobile measurement platforms with robust analytical instrumentation completed tracer-dilution experiments in California at a landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Data collected for landfill CH4 agree with the current California emissions inventory, while NGCS data show the possible variability from this type of facility. This work displays the utility of mobile GHG measurements to validate existing measurement and modeling approaches, such that emission inventory values can be confirmed, associated uncertainties reduced, and mitigation efforts quantified.


Asunto(s)
Contaminantes Atmosféricos/química , Cambio Climático , Monitoreo del Ambiente/métodos , Metano/química , Gas Natural/análisis , Eliminación de Residuos , Óxido Nitroso/química
4.
Environ Sci Technol ; 48(2): 1084-93, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24328112

RESUMEN

To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.


Asunto(s)
Contaminantes Atmosféricos/análisis , Gases/análisis , Calentamiento Global , Halogenación , California
5.
J Air Waste Manag Assoc ; 61(10): 1046-56, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22070037

RESUMEN

Fuel-based emission factors for 143 light-duty gasoline vehicles (LDGVs) and 93 heavy-duty diesel trucks (HDDTs) were measured in Wilmington, CA using a zero-emission mobile measurement platform (MMP). The frequency distributions of emission factors of carbon monoxide (CO), nitrogen oxides (NO(x)), and particle mass with aerodynamic diameter below 2.5 microm (PM2.5) varied widely, whereas the average of the individual vehicle emission factors were comparable to those reported in previous tunnel and remote sensing studies as well as the predictions by Emission Factors (EMFAC) 2007 mobile source emission model for Los Angeles County. Variation in emissions due to different driving modes (idle, low- and high-speed acceleration, low- and high-speed cruise) was found to be relatively small in comparison to intervehicle variability and did not appear to interfere with the identification of high emitters, defined as the vehicles whose emissions were more than 5 times the fleet-average values. Using this definition, approximately 5% of the LDGVs and HDDTs measured were high emitters. Among the 143 LDGVs, the average emission factors of NO(x), black carbon (BC), PM2.5, and ultrafine particle (UFP) would be reduced by 34%, 39%, 44%, and 31%, respectively, by removing the highest 5% of emitting vehicles, whereas CO emission factor would be reduced by 50%. The emission distributions of the 93 HDDTs measured were even more skewed: approximately half of the NO(x) and CO fleet-average emission factors and more than 60% of PM2.5, UFP, and BC fleet-average emission factors would be reduced by eliminating the highest-emitting 5% HDDTs. Furthermore, high emissions of BC, PM2.5, and NO(x) tended to cluster among the same vehicles.


Asunto(s)
Monitoreo del Ambiente/métodos , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Los Angeles , Vehículos a Motor , Tamaño de la Partícula , Material Particulado
6.
Environ Sci Technol ; 37(4): 681-90, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12636265

RESUMEN

Potential source contribution function (PSCF) modeling using polychlorinated biphenyl (PCB) concentrations measured in the Chicago area resolved three PCB source sectors. They were (i) the direction northwest of Chicago, (ii) the direction southwest of Chicago, and (iii) the south side of Chicago in the neighborhood of Lake Calumet. The area south of Chicago was further examined by taking upwind/ downwind samples near a landfill and sludge drying beds. Results identified the sludge drying beds and a large landfill as PCB sources to the atmosphere. Another PCB source identified in Chicago was a transformer storage yard. This site had the highest upwind/downwind concentration increments in this study (downwind PCB concentrations were more than 5 times those in the upwind air). These PCB sources were characterized in terms of inventories, emission rates, contributions, and PCB congener profiles (fingerprints). Preliminarily results indicate that the sludge may emit up to 90 kg/yr of PCBs to the air. This amount is probably not a significant contribution of PCBs to the Chicago atmosphere on the basis of dispersion modeling results and a simple box model.


Asunto(s)
Contaminantes Ambientales/análisis , Modelos Teóricos , Bifenilos Policlorados/análisis , Chicago , Suministros de Energía Eléctrica , Monitoreo del Ambiente , Industrias , Eliminación de Residuos , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...